Analysis of Visual Characteristics of Short-circuited Arc Sites

Author:

Hong SeongjunORCID,Bang Sun-bae,Bang Jun-ho,Park Jinyoung,Min Ki-deuk,Lee Jin-sik

Abstract

AbstractIdentifying the cause of fire at a fire site is an important fire prevention measure to prevent recurrence. In particular, information about molten marks of the copper wire is essential to check whether electric power is being supplied at the fire site. This study aims to analyse the visual characteristics of arc sites formed by a short circuit to identify the molten marks at the fire site. When a short circuit occurs, electromagnetic force is generated by the short circuit current, and the arc repulsion force is generated by the contact arc. In this study, the effects of the forces, which act on the short-circuited melted area, on the formation of copper molten marks were investigated. Copper molten marks formed by a short circuit were experimentally fabricated, and the visual characteristics based on the force that was applied to the melted area were identified and classified based on features. The results showed that the melted area was affected by both the arc repulsion and electromagnetic forces, resulting in the visual differences between the short-circuited arc sites and flame-melted ones, which are affected by gravity and molecular force. These results provide a theoretical basis for discriminating between arc sites formed by a short circuit and flame-melted marks at the fire site. The validity of this study was verified via a comparative analysis using shape and cross-sectional microstructure of molten marks collected at the fire site.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Building and Construction

Reference21 articles.

1. National Fire Protection Association (2021) NFPA 921: Guide for fire and explosion investigations.

2. Babrauskas V (2021) Electrical fires and explosions. Fire Science Publishers, New York

3. Bureau of alcohol, tobacco, firearms, and explosives, fire research laboratory, technical bulletin 001: visual characteristics of fire melting on copper conductor.

4. Fire Investigation Section of Tokyo Fire Department (1971) Electrical fire cause and identification, p. 17.

5. M. Benfer, D, Gottuk, (2014) Distinguishing between arcing and melting damage in electrical receptacles. Proc Int Symp Fire Investig Sci and Technol.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3