Numerical Simulations of Gas Burner Experiments in a Residential Structure with HVAC System

Author:

Chaudhari Dushyant M.ORCID,Weinschenk CraigORCID,Floyd Jason E.ORCID

Abstract

AbstractControlled fire experiments using a gas burner were previously conducted in a purpose-built, two-story, moderately air-tight residential structure to understand the effect of a heating, ventilating, and air conditioning (HVAC) system and door positions on the fire-induced environment. Temperatures, gas concentrations (oxygen, water vapor, carbon dioxide), and differential pressures were monitored throughout the structure. HVAC status (off vs. on) and stairwell door position of the fire room (open vs. closed) were varied for the experiments analyzed in this paper. In this study, Fire Dynamics Simulator (FDS) v. 6.7.9 was used to simulate these experiments. Experimental data quantifying the air tightness of the building and cold flowrates through HVAC vents were determined to be important to optimize leakages and HVAC loss coefficients for the simulation setup. Pressure development in the structure was predicted correctly to be higher on the first floor and lower in the basement, but the magnitude of steady-state pressure was underpredicted. The measured and predicted steady-state temperature distributions were statistically different for the cases with and without the HVAC on, regardless of the door position. FDS predicted gas transport through the HVAC duct network, and under-predicted temperature rise and water vapor content by about 9% and 10%, respectively, and over-predicted volumetric oxygen and carbon dioxide content by about 21% and 6%, respectively. Temperature rise prediction in the closed room, where the gas transport primarily occurred via the HVAC duct network, improved after including heat loss from the HVAC duct to the ambient.

Funder

Federal Emergency Management Agency

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3