Comparison of heat production and bone architecture changes in the implant site preparation with compressive osteotomes, osseodensification technique, piezoelectric devices, and standard drills: an ex vivo study on porcine ribs

Author:

Bhargava Nishith,Perrotti VittoriaORCID,Caponio Vito Carlo Alberto,Matsubara Victor Haruo,Patalwala Diana,Quaranta Alessandro

Abstract

AbstractThis study aimed at investigating differences in heat generation and bone architecture following four different implant site preparation techniques: compressive osteotomes, conventional drills, osseodensification (OD mode with osseodensification drills), and piezoelectric systems. Porcine rib bones were used as a model for implant surgery. Thermocouples were employed to measure temperature changes, and micro-CT to assess the bone architecture. The primary stability and insertion torque values of the implants placed in the differently prepared sites were assessed. The temperature changes were higher with Piezo. The average primary stability using the ISQ scale was the greatest for drills (76.17 ± 0.90) and the lowest for osteotomes (71.50 ± 11.09). Insertion torque was significantly higher with the osseodensification method (71.67 ± 7.99 Ncm) in comparison to drills, osteotomes, and piezo. Osteotomes showed the highest bone to implant contact percentage (39.83 ± 3.14%) and average trabecular number (2.02 ± 0.21 per mm), while drills exhibited the lowest (30.73 ± 1.65%; 1.37 ± 0.34 per mm). Total implant site bone volume was the highest with osseodensification (37.26 ± 4.13mm3) and the lowest for osteotomes (33.84 ± 3.84mm3). Statistical analysis showed a high primary stability and decrease in temperature during implant site preparation with osseodensification technique. The results support the use of osseodensification technique for implant site preparation.

Funder

Università degli Studi G. D'Annunzio Chieti Pescara

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3