Acute cytotoxic effects of silica microparticles used for coating of plastic blood-collection tubes on human periosteal cells

Author:

Masuki Hideo,Isobe Kazushige,Kawabata Hideo,Tsujino Tetsuhiro,Yamaguchi Sadahiro,Watanabe Taisuke,Sato Atsushi,Aizawa Hachidai,Mourão Carlos Fernando,Kawase TomoyukiORCID

Abstract

AbstractBecause of its simple operation, platelet-rich fibrin (PRF) is becoming more popular than the original form, platelet-rich plasma (PRP), in regenerative dentistry. PRF preparation requires plain glass blood-collection tubes, but not either anticoagulants or coagulation factors. However, such glass tubes designed for laboratory testing are no longer commercially available. Although several glass tubes specifically designed for PRF preparation are available, many clinicians prefer to obtain stably supplied substitutes, such as silica-coated plastic tubes produced by major medical device companies. The quality of PRF prepared by silica-coated tubes has not been assessed and we previously reported significant contamination of silica microparticles in the resulting PRF matrix and alerted clinicians against the use for PRF preparation. To further assess the biosafety of the silica microparticles, we presently examined their effects on human normal periosteal cells derived from alveolar bone. The periosteal cells were obtained from explant cultures of small periosteal tissues obtained from healthy donors. Silica microparticles were obtained from silica-coated tubes and added to cell cultures. Cellular responses were monitored using a tetrazolium assay, phase-contract inverted microscopy, an immunofluorescence method, and scanning electron microscopy. Silica microparticles adsorbed onto the cell surface with seemingly high affinity and induced apoptosis, resulting in significant reduction of cell proliferation and viability. These findings suggest that silica microparticles contained in plastic tubes for the purpose of blood coagulation are hazardous for various cell types around sites where silica-contaminated PRF matrices are implanted.

Funder

Japan Society for the promotion of science

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3