Finite element evaluation of dentin stress changes following different endodontic surgical approaches

Author:

Aslan TuğrulORCID,Esim Emir,Üstün Yakup

Abstract

AbstractThe aim was to compare the effect of different endodontic surgical treatments on the stress distributions in dentin of a simulated first mandibular molar tooth using the finite element analysis method. Three surgical endodontic procedures (apical resection, root amputation, and hemisection) were simulated in a first mandibular molar. Biodentine or mineral-trioxide-aggregate was used to repair the surgery site in apical resection and root amputation models; the remaining root canal spaces were filled with gutta-percha. Access cavities were restored using resin composite. In hemisection model, root canal was filled with gutta-percha, and coronal restoration was finished with a monolithic zirconia crown. A sound tooth model was created as a control model. An oblique force of 300 N angled at 45° to the occlusal plane was simulated. Maximum von Mises stresses were evaluated in dentin near the surgery regions and the entire tooth. Apical resection/Biodentine and apical resection/mineral-trioxide-aggregate models generated maximum von Mises stresses of 39.001 MPa and 39.106 MPa, respectively. The recorded maximum von Mises stresses in root amputation models were 66.491 MPa for root amputation/Biodentine and 73.063 MPa for root amputation/mineral-trioxide-aggregate models. The highest maximum von Mises stress value among all models was observed in the hemisection model, measuring 138.87 MPa. Hemisection induced the highest von Mises stresses in dentin, followed by root amputation and apical resection. In apical resection, Biodentine and mineral-trioxide-aggregate did not show a significant difference in stress distribution. Biodentine in root amputation may lead to lower stresses compared to mineral-trioxide-aggregate.

Funder

Erciyes University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3