How loss of tooth structure impacts the biomechanical behavior of a single-rooted maxillary premolar: FEA

Author:

Abdelfattah Roaa AbdelwahabORCID,Nawar Nawar Naguib,Kataia Engy M.,Saber Shehabeldin Mohamed

Abstract

AbstractTo evaluate the influence of the loss of coronal and radicular tooth structure on the biomechanical behavior and fatigue life of an endodontically treated maxillary premolar with confluent root canals using finite element analysis (FEA). An extracted maxillary second premolar was scanned to produce intact (IT) 3D model. Models were designed with an occlusal conservative access cavity (CAC) with different coronal defects; mesial defect (MO CAC), occlusal, mesial and distal defect (MOD CAC), and 2 different root canal preparations (30/.04, and 40/.04) producing 6 experimental models. FEA was used to study each model. A simulation of cycling loading of 50N was applied occlusally to stimulate the normal masticatory force. Number of cycles till failure (NCF) was used to compare strength of different models and stress distribution patterns via von Mises (vM) and maximum principal stress (MPS). The IT model survived 1.5 × 1010 cycles before failure, the CAC-30.04 had the longest survival of 1.59 × 109, while the MOD CAC-40.04 had the shortest survival of 8.35 × 107 cycles till failure. vM stress analysis showed that stress magnitudes were impacted by the progressive loss of coronal tooth structure rather than the radicular structure. MPS analysis showed that significant loss of coronal tooth structure translates into more tensile stresses. Given the limited size of maxillary premolars, marginal ridges have a critical role in the biomechanical behavior of the tooth. Access cavity preparation has a much bigger impact than radicular preparation on their strength and life span.

Funder

British University in Egypt

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3