Biomechanical behavior of all-on-4 concept and alternative designs under different occlusal load configurations for completely edentulous mandible: a 3-D finite element analysis

Author:

Şentürk AybenORCID,Akaltan Funda

Abstract

AbstractThe aim of this study was to evaluate the effect of the All-on-4 design and 4 alternative implant-supported fixed prosthesis designs on stress distribution in implants, peri-implant bone, and prosthetic framework in the edentulous mandible under different loading conditions using three-dimensional finite element analysis (3D-FEA).Five different experimental finite element models (Model A (unsplinted 6), Model B (splinted 6), Model C (All-on-4), Model D (axial; 2 anterior, 2 posterior), and Model E (4 interforaminal)) were created. Three different loading conditions were applied (canine loading, unilateral I-loading, and unilateral II-loading). The highest minimum (Pmin) and the maximum (Pmax) principal stress values were acquired for cortical and trabecular bones; the highest von Mises (mvM) stress values were obtained for implants and metal frameworks. Model B and Model D showed the most favorable stress distribution. The All-on-4 design (Model C) also showed acceptable stress values close to those of Model B and Model D in the cortical and trabecular bones. In accordance with the stress values in the bone structure, the lowest stress values were measured in the implants and Co-Cr framework in Model B and Model D. The highest stress values in all structures were measured for unilateral loading- II, while the lowest values were found for canine loading. It was concluded that Model B and Model D experimental models showed better biomechanical performance in all structures. Furthermore, the use of a splinted framework, avoiding cantilevers, results in lower stress transmission. On the other hand, canine loading and unilateral loading-I exhibited the best loading conditions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3