Experimental Characterization of Short Fiber-Reinforced Composites on the Mesoscale by Indentation Tests

Author:

Rauter NatalieORCID,Lammering Rolf

Abstract

AbstractIndentation tests are widely used to characterize the material properties of heterogeneous materials. So far there is no explicit analysis of the spatially distributed material properties for short fiber-reinforced composites on the mesoscale as well as a determination of the effective cross-section that is characterized by the obtained measurement results. Hence, the primary objective of this study is the characterization of short fiber-reinforced composites on the mesoscale. Furthermore, it is of interest to determine the corresponding area for which the obtained material parameters are valid. For the experimental investigation of local material properties of short fiber-reinforced composites, the Young’s modulus is obtained by indentation tests. The measured values of the Young’s modulus are compared to results gained by numerical simulation. The numerical model represents an actual microstructure derived from a micrograph of the used material. The analysis of the short fiber-reinforced material by indentation tests reveals the layered structure of the specimen induced by the injection molding process and the oriented material properties of the reinforced material are observed. In addition, the experimentally obtained values for Young’s modulus meet the results of a corresponding numerical analysis. Finally, it is shown, that the area characterized by the indentation test is 25 times larger than the actual projected area of the indentation tip. This leads to the conclusion that indentation tests are an appropriate tool to characterize short fiber-reinforced material on the mesoscale.

Funder

Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3