Fire Safety Assessment of Epoxy Composites Reinforced by Carbon Fibre and Graphene

Author:

Zhang QiangjunORCID,Wang Yong C,Soutis Constantinos,Bailey Colin G.,Hu Yuan

Abstract

AbstractThis paper presents a coupled numerical investigation to assess the reaction to fire performance and fire resistance of various types of epoxy resin (ER) based composites. It examines the fire response of carbon fibre (CF) reinforced ER (CF/ER), ER with graphene nanoplatelets (GNP/ER) and CF reinforced GNP/ER (CF/GNP/ER). Thermal, physical and pyrolysis properties are presented to assist numerical modelling that is used to assess the material ability to pass the regulatory vertical burn test for new aircraft structures and estimate in-fire and post-fire residual strength properties.Except for the CF/GNP/ER composite, all other material systems fail the vertical burn test due to continuous burning after removal of the fire source. Carbon fibres are non-combustible and therefore reduce heat release rate of the ER composite. By combining this property with the beneficial barrier effects of graphene platelets, the CF/GNP/ER composite with 1.5 wt% GNP and 50 wt% CF self-extinguishes within 15 s after removal of the burner with a relatively small burn length. Graphene drastically slows down heat conduction and migration of decomposed volatiles to the surface by creating improved char structures. Thus, graphene is allowing the CF/GNP/ER composite panel to pass the regulatory vertical burn test.Due to low heat conduction and reduced heat release rate, the maximum temperatures in the CF/GNP/ER composite are low so the composite material retains very high in-fire and post-fire mechanical properties, maintaining structural integrity. In contrast, temperatures in the CF/ER composite are much higher. At a maximum temperature of 86 °C, the residual in-fire tensile and compressive mechanical strengths of CF/GNP/ER are about 87% and 59% respectively of the ambient temperature values, compared to 70% and 21% respectively for the CF/ER composite that has a temperature of 140 °C at the same time (but the CF/ER temperature will be higher due to continuing burning). Converting mass losses of the composites into char depth, the post-fire mechanical properties of the CF/GNP/ER composite are about 75% of the ambient condition compared to about 68% for the CF/ER composite.

Funder

University of Manchester

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3