Feasibility of a Morphing Rocket Nozzle for Thrust Vector Control based on Corrugated Composite Laminates

Author:

Airoldi Alessandro,Boiocchi Matteo,Natali Maurizio,Mirani Chiara,Di Pancrazio Luca,Consiglio Gabriele,Ballarin PietroORCID,Riva Marco

Abstract

AbstractThe paper presents technological, experimental and numerical studies aimed at the development of a morphing nozzle in composite material with a deformable divergent section, which is designed to control the vector of thrust in rockets without using mechanisms or localized flexible joints. The nozzle design is characterized by corrugated composite walls and longitudinal elements that make possible a separation of load paths involved in bending response, bearing of internal pressures and related force resultants. Mechanical requirements and conditions of pressure, temperature and gas velocity in the morphing part of the nozzle are defined by selecting and investigating two potential application scenarios. Thereafter, both technological aspects and the assessment of mechanical performances are addressed by designing, manufacturing and testing a composite demonstrator with morphing capabilities. A lightweight and flexible thermal protection system is proposed, designed and numerically analyzed. Finally, a virtual demonstrator of the composite morphing nozzle is developed. Results point out the possibility of manufacturing composite elements with axial load bearing capability that may undergo significant bending deformation without failures. The integration of a flexible thermal protection systems leads to a promising concept for the development of innovative morphing nozzle for rocket engine applications.

Funder

H2020 MANUNET, COMETAS

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3