Experimental and Numerical Study of Ballistic Resistance of Composites Based on Sandwich Metallic Foams

Author:

Dmitruk AnnaORCID,Naplocha Krzysztof,Pach Joanna,Pyka Dariusz,Ziółkowski Grzegorz,Bocian Mirosław,Jamroziak Krzysztof

Abstract

AbstractIn recent years, hybrid composite materials are of increasing interest during the search for new materials to be used as ballistic barriers (shields) and kinetic energy absorbers. The main objective of this study is to test the energy absorption capacity of Zn-Al alloys filled with various polymer materials (epoxy resin, polyurethane resin and silicone). The ballistic resistance of modern hybrid materials to direct firing of a 5.56 × 45 mm SS109 projectile and during quasi-static piercing test is examined. Next, a numerical simulation in the ABAQUS environment is performed. In order to accurately reproduce the foam structure, a computed microtomography (CT) system is used. In the simulation of deformations of viscoplastic bodies, the Lagrange and Smoothed Particle Hydrodynamic (SPH) methods are applied. The obtained results from numerical analyses are verified with experimental results. Metallic foams are proven to have only a remote influence on the impact load, while, when filled with polyurethane resin, they show resistance to the overshoot. Performed simulation supports the detailed analysis of the impact energy dissipation for each of the samples.

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3