Elementary Students’ Use of Mechanistic Reasoning to Explain Community-Connected Engineering Design Solutions

Author:

Topçu Mustafa Sami,Wendell Kristen Bethke,Andrews Chelsea Joy

Abstract

AbstractMechanistic reasoning about an artifact or system involves thinking about its underlying entities and the properties, activities, and cause-effect relationships of those entities. Previous studies of children’s mechanistic reasoning about engineering solutions have mostly focused on specific mechanical systems such as gear trains. Yet there is growing interest in more contextualized, community-connected engineering design experiences for elementary students. Important questions remain about how the specific features of community contexts influence student opportunities for engineering design practice and reasoning. In this study, we explore whether comparisons in students’ mechanistic reasoning can be made across a range of five different community design contexts. For this qualitative descriptive study, we focus on interview data collected after each of five community-connected engineering-enriched science curriculum units: accessible playground design (3rd grade, N = 8, district A, schools 1 and 2), displaced animal relocation design (3rd grade, N = 10, district A, school 1), migration stopover site design (4th grade, N = 4, district A, school 2), retaining wall design (4th grade, N = 13, district B, school 1), and water filter design (5th grade, N = 9 students, district A, school 3). The findings showed that all students named entities and described entity factors for the design solutions for all five units. For the playground, displaced animals, and stopover sites units, some students described the design artifacts without explicitly expressing connections between entity factors and/or the way factors linked up to the design performance. We argue that particular features of the design tasks influenced students’ approaches to explaining their design solutions. Therefore, we can claim that comparisons can be made across different community-connected engineering design contexts in terms of children’s mechanistic reasoning.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

National Science Foundation

Yıldız Technical University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3