Abstract
AbstractKwapień’s theorem asserts that every continuous linear operator from $$\ell _{1}$$
ℓ
1
to $$\ell _{p}$$
ℓ
p
is absolutely $$\left( r,1\right) $$
r
,
1
-summing for $$1/r=1-\left| 1/p-1/2\right| .$$
1
/
r
=
1
-
1
/
p
-
1
/
2
.
When $$p=2$$
p
=
2
it recovers the famous Grothendieck’s theorem. In this paper we investigate multilinear variants of these theorems and related issues. Among other results we present a unified version of Kwapień’s and Grothendieck’s results that encompasses the cases of multiple summing and absolutely summing multilinear operators.
Funder
Fundação de Apoio à Pesquisa do Estado da Paraíba
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Springer Science and Business Media LLC
Reference28 articles.
1. Albiac, F., Ansorena, J.L., Wojtaszczyk, P.: Quasi-greedy bases in $$\ell _{p}$$ ($$0 < p < 1$$) are democratic. J. Funct. Anal. 280(7), 108871 (2021)
2. Albuquerque, N., Rezende, L.: Anisotropic regularity principle in sequence spaces and applications. Commun. Contemp. Math. 20, 1750087 (2018)
3. Albuquerque, N., Rezende, L.: Asymptotic estimates for unimodular multilinear forms with small norms on sequence spaces. Bull. Braz. Math. Soc. (N.S.) 52(1), 23–39 (2021)
4. Albuquerque, N., Araújo, G., Cavalcante, W., Nogueira, T., Núñez-Alarcón, D., Pellegrino, D., Rueda, P.: On summability of multilinear operators and applications. Ann. Funct. Anal. 9, 574–590 (2018)
5. Alencar, R., Matos, M.C.: Some classes of multilinear mappings between Banach spaces, Publicaciones del Departamento de Análisis Matemático 12, Universidad Complutense Madrid (1989)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Sharp Exponents for Anisotropic Hardy–Littlewood Type of Inequalities;Bulletin of the Brazilian Mathematical Society, New Series;2024-07-08