1. Alves, E., Saldanha, N.: Results on the homotopy type of the spaces of locally convex curves on $${\mathbb{S} }^3$$. Annales d’Institut Fourier 69(3), 1147–1185 (2019)
2. Alves, E., Saldanha, N.: On the homotopy type of intersections of two real Bruhat cells. Int. Math. Res. Not. 1, 1–57 (2022)
3. Alves, E., Goulart, V., Saldanha, N.: Homotopy type of spaces of locally convex curves in the sphere $${\mathbb{S}}^3$$ (2022). arXiv e-prints. arXiv:2205.10928
4. Anisov, S.: Convex curves in $${{\mathbb{R}}}{{\mathbb{P}}}^{n}$$. In: Proceedings of the Steklov Institute of Mathematics, Moscow, Russia, vol. 221, 2, pp. 3–39 (1998)
5. Berenstein, A., Fomin, S., Zelevinsky, A.: Parametrizations of canonical bases and totally positive matrices. Adv. Math. 122, 49–149 (1996)