Abstract
AbstractApplying Geometric Invariant Theory (GIT), we study the stability of foliations of degree 3 on $$\mathbb {P}^{2}$$
P
2
with a unique singular point of multiplicity 1, 2, or 3 and Milnor number 13. In particular, we characterize those foliations for multiplicity 2 in three cases: stable, strictly semistable, and unstable.
Funder
Sistema Nacional de Investigadores
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Alcántara, C.R.: The good quotient of the semi-stable foliations of $${\mathbb{C}\mathbb{P} }^{2}$$ of degree 1. RM 53(1), 1–7 (2009)
2. Alcántara, C.R.: Foliations on $${\mathbb{C}\mathbb{P} }^{2}$$ of degree 2 with degenerate singularities. Bull. Brazil. Math. Soc. New Ser. 44(3), 421–454 (2013)
3. Alcántara, C.R.: Foliations on $${\mathbb{C}\mathbb{P} }^{2}$$ of degree d with a singular point with milnor number $$d^{2}+d+1$$. Revista Matemática Complutense 31(1), 187–199 (2018)
4. Alcántara, C.R., Pantaleón-Mondragón, R.: Foliations on $${\mathbb{C}\mathbb{P} }^{2}$$ with a unique singular point without invariant algebraic curves. Geom. Dedicata. 207(1), 193–200 (2020)
5. Alcántara, C.R., Ronzon-Lavie, R.: Classification of foliations on $${\mathbb{C}\mathbb{P} }^2$$ of degree 3 with degenerate singularities. J. Singul. 14, 52–73 (2016)