Author:
Haubner Roland,Strobl Susanne
Abstract
AbstractThe copper production in the Alps began three thousand years BC, usually near ore deposits in Austria and Switzerland. For copper smelting, sulphidic ores like chalcopyrite and fahlores were used. Copper produced from fahlores was widely used in the Alps resulting in As and Sb contents in the metallic copper. Such copper alloys were generally referred to as arsenical bronzes. However, in ancient bronze objects, a wide range of arsenic content was observed. One question relates to how much arsenic is transferred into the bronze alloy during smelting. By thermodynamic equilibrium calculations, the roasting and smelting processes are simulated and show that As reacts already to gaseous As compounds before Cu2S is attacked and metallic Cu is formed. In case of Sb liquid, Sb2O3 is formed quickly during roasting and is finally enriched in the slag.These results have been confirmed by the investigation of an ancient copper ingot containing 4 wt. % As and 2.5 wt. % S as well as smaller quantities of Sb, Ni, Fe, and Ag. The main phases apart from metallic copper are Cu3As, Cu2S, and Sb oxide. In a slag sample, an inclusion was characterized containing chalcopyrite, FeO, and Sb oxide This result is in accordance with the thermodynamic calculations where Sb2O3 was obtained.Another interesting point is the As loss of arsenical bronzes during remelting. Thermodynamic equilibrium calculations reveal that Cu3As is very stable and during remelting no evaporation of As is observed. Moreover, during oxidation of metallic Cu-As, the formation of Cu2O is favoured from Cu and not from Cu3As. Consequently during melting of Cu-As for casting, at first Cu2O is formed resulting in an As enrichment in the melt and in the casted object, respectively. These effects are superimposed and, if recycled Cu alloys are used, the starting concentration of As is unknown.
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Tylecote, R.F.: A History of Metallurgy. The Metals Society, Mid County Press, London (1976)
2. Tylecote, R.F., Ghaznavi, H.A., Boydell, P.J.: Partitioning of trace elements between the ores, fluxes, slags and metal during the smelting of copper. J. Archaeol. Sci. 4, 305–333 (1977)
3. Tylecote, R.F.: Summary of results of experimental work on early copper smelting. In: Oddy, W.A. (ed.) Aspects of Early Metallurgy, pp. 5–12. British Museum, London (1980)
4. Archaeologia Austriaca;E Pernicka,2016
5. Haubner, R.: Die prähistorische Kupfermetallurgie – allgemeine Betrachtungen. Berg Huettenmaenn. Monatsh. 166, 343–351 (2021)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献