Regioisomeric Polymer Semiconductors Based on Cyano-Functionalized Dialkoxybithiophenes: Structure–Property Relationship and Photovoltaic Performance

Author:

Bai Qingqing,Huang Jun,Guo Han,Ma Suxiang,Yang Jie,Liu Bin,Yang Kun,Sun Huiliang,Woo Han Young,Niu Li,Guo Xugang

Abstract

AbstractCyano substitution is vital to the molecular design of polymer semiconductors toward highly efficient organic solar cells. However, how regioselectivity impacts relevant optoelectronic properties in cyano-substituted bithiophene systems remain poorly understood. Three regioisomeric cyano-functionalized dialkoxybithiophenes BTHH, BTHT, and BTTT with head-to-head, head-to-tail, and tail-to-tail linkage, respectively, were synthesized and characterized in this work. The resulting polymer semiconductors (PBDTBTs) based on these building blocks were prepared accordingly. The regiochemistry and property relationships of PBDTBTs were investigated in detail. The BTHH moiety has a higher torsional barrier than the analogs BTHT and BTTT, and the regiochemistry of dialkoxybithiophenes leads to fine modulation in the optoelectronic properties of these polymers, such as optical absorption, band gap, and energy levels of frontier molecular orbitals. Organic field-effect transistors based on PBDTBTHH had higher hole mobility (4.4 × 10−3 cm2/(V·s)) than those (ca. 10−4 cm2/(V·s)) of the other two polymer analogs. Significantly different short-circuit current densities and fill factors were obtained in polymer solar cells using PBDTBTs as the electron donors. Such difference was probed in greater detail by performing space-charge-limited current mobility, thin-film morphology, and transient photocurrent/photovoltage characterizations. The findings highlight that the BTHH unit is a promising building block for the construction of polymer donors for high-performance organic photovoltaic cells. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3