Author:
Li Yue,Wang Tianzuo,Asim Muhammad,Pan Lun,Zhang Rongrong,Huang Zhen-Feng,Chen Zhichao,Shi Chengxiang,Zhang Xiangwen,Zou Ji-Jun
Abstract
AbstractElectrocatalytic water splitting is limited by kinetics-sluggish oxygen evolution, in which the activity of catalysts depends on their electronic structure. However, the influence of electron spin polarization on catalytic activity is ambiguous. Herein, we successfully regulate the spin polarization of Co3O4 catalysts by tuning the concentration of cobalt defects from 0.8 to 14.5%. X-ray absorption spectroscopy spectra and density functional theory calculations confirm that the spin polarization of Co3O4 is positively correlated with the concentration of cobalt defects. Importantly, the enhanced spin polarization can increase hydroxyl group absorption to significantly decrease the Gibbs free energy change value of the OER rate-determining step and regulate the spin polarization of oxygen species through a spin electron-exchange process to easily produce triplet-state O2, which can obviously increase electrocatalytic OER activity. In specific, Co3O4-50 with 14.5% cobalt defects exhibits the highest spin polarization and shows the best normalized OER activity. This work provides an important strategy to increase the water splitting activity of electrocatalysts via the rational regulation of electron spin polarization.
Publisher
Springer Science and Business Media LLC
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献