Li2TiO3 Dopant and Phosphate Coating Improve the Electrochemical Performance of LiCoO2 at 3.0–4.6 V

Author:

Shi Baozhao,Feng Jiangli,Liu Jing,Zhou Yanan,Zhang Jinli,Li Wei

Abstract

AbstractA sol–gel tandem with a solid-phase modification procedure was developed to synthesize Li2TiO3-doped LiCoO2 together with phosphate coatings (denoted as LCO-Ti/P), which possesses excellent high-voltage performance in the range of 3.0–4.6 V. The characterizations of X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy illustrated that the modified sample LCO-Ti/P had the dopant of monoclinic Li2TiO3 and amorphous Li3PO4 coating layers. LCO-Ti/P has an initial discharge capacity of 211.6 mAh/g at 0.1 C and a retention of 85.7% after 100 cycles at 1 C and 25 ± 1 °C between 3.0 and 4.6 V. Nyquist plots reflect that the charge transfer resistance of LCO-Ti/P after 100 cycles at 1 C is much lower than that of the spent LCO, which benefits Li-ion diffusion. Density functional theory calculations disclose the superior lattice-matching property of major crystal planes for Li2TiO3 and LiCoO2, the lower energy barriers for Li-ion diffusion in Li2TiO3, and the suppressed oxygen release performance resulting from phosphate adsorption. This work provides useful guidance on the rational design of the high-voltage performance of modified LiCoO2 materials in terms of lattice-matching properties aside from the phosphate coating to reduce the energy barriers of Li-ion diffusion and enhance cycling stability.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3