Bromine–Graphite Intercalation Enabled Two-Electron Transfer for a Bromine-Based Flow Battery

Author:

Xu Yue,Xie Congxin,Li Xianfeng

Abstract

AbstractBr2/Br is a promising redox couple in flow batteries because of its high potential, solubility, and low cost. However, the reaction between Br and Br2 only involves a single-electron transfer process, which limits its energy density. Herein, a novel two-electron transfer reaction based on Br/Br+ was studied and realized through Br+ intercalation into graphite to form a bromine–graphite intercalation compound (Br–GIC). Compared with the pristine Br/Br2 redox pair, the redox potential of Br intercalation/deintercalation in graphite is 0.5 V higher, which has the potential to substantially increase the energy density. Different from Br2/Br in the electrolyte, the diffusion rate of Br intercalation in graphite decreases with increasing charge state because of the decreasing intercalation sites in graphite, and the integrity of the graphite structure is important for the intercalation reaction. As a result, the battery can continuously run for more than 300 cycles with a Coulombic efficiency exceeding 97% and an energy efficiency of approximately 80% at 30 mA/cm2, and the energy density increases by 65% compared with Br/Br2. Combined with double-electron transfer and a highly reversible electrochemical process, the Br intercalation redox couple demonstrates very promising prospects for stationary energy storage.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3