Author:
Yan Liang,Lei Haitao,Yang Pengcheng,Zhang Wei
Abstract
AbstractThe synthesis of aryl iodides from commercially available raw chemicals by simple, cheap and green strategies is of fundamental significance. Aryl iodides can undergo a series of homo-/cross-coupling reactions for the synthesis of important industrial chemicals and materials. Traditional methods require the electrophilic substitution on aromatic compounds by iodine or hypervalent iodine compounds, which suffers from the use of erosive halogens or hazardous oxidants. With the development of green chemistry in the field of electrochemical synthesis, anodic oxidation-derived I+ cations have been used for substitution reactions. However, the selectivity of the iodination by these electrochemical methods remains unsatisfactory. We believed that the anolyte is contaminated by trace platinum species from the working electrode. Herein, we report the generation of active I+ species from the anodic oxidation of I2 in acetonitrile using a glassy carbon electrode. With the presence of H+, electrolyte prepared with a glassy carbon anode can react with anisole to selectively form 4-iodoanisole with a yield as high as 97%. On contrast, the electrolytes prepared from Pt and graphite anodes finished the reaction with yields of 16% and 60% for 4-iodoanisole, respectively. This electrochemical method also applies to the iodination of toluene, benzonitrile and bromobenzene, delivering the target para-iodination products with 92%, 84%, and 73% yields, respectively. Thus, an atom-efficient and highly selective aryl iodination method was developed without the use of excessive oxidants.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献