Electrochemically Generated Iodine Cations from a Glassy Carbon Electrode for Highly Selective Iodination of Anisole

Author:

Yan Liang,Lei Haitao,Yang Pengcheng,Zhang Wei

Abstract

AbstractThe synthesis of aryl iodides from commercially available raw chemicals by simple, cheap and green strategies is of fundamental significance. Aryl iodides can undergo a series of homo-/cross-coupling reactions for the synthesis of important industrial chemicals and materials. Traditional methods require the electrophilic substitution on aromatic compounds by iodine or hypervalent iodine compounds, which suffers from the use of erosive halogens or hazardous oxidants. With the development of green chemistry in the field of electrochemical synthesis, anodic oxidation-derived I+ cations have been used for substitution reactions. However, the selectivity of the iodination by these electrochemical methods remains unsatisfactory. We believed that the anolyte is contaminated by trace platinum species from the working electrode. Herein, we report the generation of active I+ species from the anodic oxidation of I2 in acetonitrile using a glassy carbon electrode. With the presence of H+, electrolyte prepared with a glassy carbon anode can react with anisole to selectively form 4-iodoanisole with a yield as high as 97%. On contrast, the electrolytes prepared from Pt and graphite anodes finished the reaction with yields of 16% and 60% for 4-iodoanisole, respectively. This electrochemical method also applies to the iodination of toluene, benzonitrile and bromobenzene, delivering the target para-iodination products with 92%, 84%, and 73% yields, respectively. Thus, an atom-efficient and highly selective aryl iodination method was developed without the use of excessive oxidants.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3