The role of the comprehensive complication index for the prediction of survival after liver transplantation

Author:

Lai QuirinoORCID,Melandro Fabio,Nowak Greg,Nicolini Daniele,Iesari Samuele,Fasolo Elisa,Mennini Gianluca,Romano Antonio,Mocchegiani Federico,Ackenine Kevin,Polacco Marina,Marinelli Laura,Ciccarelli Olga,Zanus Giacomo,Vivarelli Marco,Cillo Umberto,Rossi Massimo,Ericzon Bo-Göran,Lerut Jan

Abstract

AbstractIn the last years, several scoring systems based on pre- and post-transplant parameters have been developed to predict early post-LT graft function. However, some of them showed poor diagnostic abilities. This study aims to evaluate the role of the comprehensive complication index (CCI) as a useful scoring system for accurately predicting 90-day and 1-year graft loss after liver transplantation. A training set (n = 1262) and a validation set (n = 520) were obtained. The study was registered at https://www.ClinicalTrials.gov (ID: NCT03723317). CCI exhibited the best diagnostic performance for 90 days in the training (AUC = 0.94; p < 0.001) and Validation Sets (AUC = 0.77; p < 0.001) when compared to the BAR, D-MELD, MELD, and EAD scores. The cut-off value of 47.3 (third quartile) showed a diagnostic odds ratio of 48.3 and 7.0 in the two sets, respectively. As for 1-year graft loss, CCI showed good performances in the training (AUC = 0.88; p < 0.001) and validation sets (AUC = 0.75; p < 0.001). The threshold of 47.3 showed a diagnostic odds ratio of 21.0 and 5.4 in the two sets, respectively. All the other tested scores always showed AUCs < 0.70 in both the sets. CCI showed a good stratification ability in terms of graft loss rates in both the sets (log-rank p < 0.001). In the patients exceeding the CCI ninth decile, 1-year graft survival rates were only 0.7% and 23.1% in training and validation sets, respectively. CCI shows a very good diagnostic power for 90-day and 1-year graft loss in different sets of patients, indicating better accuracy with respect to other pre- and post-LT scores.Clinical Trial Notification: NCT03723317.

Publisher

Springer Science and Business Media LLC

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3