Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Houchati, M., Beitelmal, A.M.H., Khraisheh, M.: Predictive modeling for rooftop solar energy throughput: a machine learning-based optimization for building energy demand scheduling. J. Energy Resour. ASME 144(1), 1–15 (2022)
2. Liu, L., Zhao, Y., Chang, D.L., Xie, J.Y., Ma, Z., Qie, S., Yin, H.G., Ronald, W.: Prediction of short-term PV power output and uncertainty analysis. Appl. Energy 228(6), 700–711 (2018)
3. Dai, Y., Wang, Y., Leng, M., et al.: LOWESS smoothing and random forest based GRU model: a short-term photovoltaic power generation forecasting method. Energy 256, 124661 (2022)
4. Wang, J.X., Guo, L.L., Zhang, C.Y., Song, L., Duan, J.Y., Duan, L.Q.: Thermal power forecasting of solar power tower system by combining mechanism modeling and deep learning method. Energy 208, 118403 (2020)
5. Rodríguez, F., Galarza, A., Vasquez, J.C., et al.: Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control. Energy 239, 122116 (2022)