Regularized conditional estimators of unit inefficiency in stochastic frontier analysis, with application to electricity distribution market

Author:

Zeebari ZanginORCID,Månsson Kristofer,Sjölander Pär,Söderberg Magnus

Abstract

AbstractIn stochastic frontier analysis, the conventional estimation of unit inefficiency is based on the mean/mode of the inefficiency, conditioned on the composite error. It is known that the conditional mean of inefficiency shrinks towards the mean rather than towards the unit inefficiency. In this paper, we analytically prove that the conditional mode cannot accurately estimate unit inefficiency, either. We propose regularized estimators of unit inefficiency that restrict the unit inefficiency estimators to satisfy some a priori assumptions, and derive the closed form regularized conditional mode estimators for the three most commonly used inefficiency densities. Extensive simulations show that, under common empirical situations, e.g., regarding sample size and signal-to-noise ratio, the regularized estimators outperform the conventional (unregularized) estimators when the inefficiency is greater than its mean/mode. Based on real data from the electricity distribution sector in Sweden, we demonstrate that the conventional conditional estimators and our regularized conditional estimators provide substantially different results for highly inefficient companies.

Publisher

Springer Science and Business Media LLC

Subject

Economics and Econometrics,Social Sciences (miscellaneous),Business and International Management

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3