Mutations of CYP1B1 and FOXC1 genes for childhood glaucoma in Japanese individuals

Author:

Fuse NobuoORCID,Kimura Masae,Shimizu Ai,Koshiba Seizo,Hamanaka Teruhiko,Nakamura Makoto,Ishida Nobuo,Sakai Hiroshi,Ikeda Yoko,Mori Kazuhiko,Endo Atsushi,Nagasaki Masao,Katsuoka Fumiki,Yasuda Jun,Matsubara Yoichi,Nakazawa Toru,Yamamoto Masayuki

Abstract

Abstract Purpose To explore the frequency and positions of genetic mutations in CYP1B1 and FOXC1 in a Japanese population. Study design Molecular genetic analysis. Methods Genomic DNA was extracted from 31 Japanese patients with childhood glaucoma (CG) from 29 families. We examined the CYP1B, FOXC1, and MYOC genes using Sanger sequencing and whole-exome sequencing (WES). Results For CYP1B1, we identified 9 families that harbored novel mutations, p.A202T, p.D274E, p.Q340*, and p.V420G; the remaining mutations had been previously reported. When mapped to the CYP1B1 protein structure, all mutations appeared to influence the enzymatic activity of CYP1B1 by provoking structural deformity. Five patients were homozygotes or compound heterozygotes, supporting the recessive inheritance of the CYP1B1 mutations in CG. In contrast, four patients were heterozygous for the CYP1B1 mutation, suggesting the presence of regulatory region mutations or strong modifiers. For the FOXC1 gene, we identified 3 novel mutations, p.Q23fs, p.Q70R, and p.E163*, all of which were identified in a heterozygous state. No mutation was found in the MYOC gene in these CG patients. All individuals with CYP1B1 and FOXC1 mutations were severely affected by early-onset CG. In the CYP1B1-, FOXC1-, and MYOC-negative families, we also searched for variants in the other candidate genes reported for CG through WES, but could not find any mutations in these genes. Conclusions Our analyses of 29 CG families revealed 9 families with point mutations in the CYP1B1 gene, and four of those patients appeared to be heterozygotes, suggesting the presence of complex pathogenic mechanisms. FOXC1 appears to be another major causal gene of CG, indicating that panel sequencing of CYP1B1 and FOXC1 will be useful for diagnosis of CG in Japanese individuals.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3