1. M. Oloko-Oba and S. Viriri, “A systematic review of deep learning techniques for tuberculosis detection from chest radiograph,” Frontiers in Medicine, 9, 830515 (2022).
2. D. Zeyu, R. Yaakob, and A. Azman, “A review of deep learning-based detection methods for tuberculosis,” in: 2022 IEEE International Conference on Computing (ICOCO) (2022), pp. 68–73.
3. M. Singh, G. V. Pujar, S. A. Kumar, M. Bhagyalalitha, H. S. Akshatha, B. Abuhaija, A. R. Alsoud, L. Abualigah, N. M. Beeraka, and A. H. Gandomi, “Evolu- tion of machine learning in tuberculosis diagnosis: a review of deep learning-based medical applications,” Electronics, 11, No. 17, 2634 (2022).
4. K. Santosh, S. Allu, S. Rajaraman, and S. Antani, “Advances in deep learning for tuberculosis screening using chest X-rays: The last 5 years review,” J. Medical Systems, 46, No. 11, 82 (2022).
5. A. A. Dovganich, A. V. Khvostikov, Y. A. Pchelintsev, A. A. Krylov, Y. Ding, and M. C. Farias, “Automatic out-of-distribution detection methods for improving the deep learning classification of pulmonary X-ray images,” J. Image and Graphics (United Kingdom), 10, No. 2, 56–63 (2022).