1. G. E. Hinton, A. Krizhevsky, N. Srivastava, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., 15, 1929–1958 (2014).
2. H. K. Jabbar and R. Z. Khan, “Methods to avoid over-fitting and under-fitting in supervised machine learning (comparative study),” in: Computer Science, Communication & Instrumentation Devices, Editors: J. Stephen, H. Rohil, and S. Vasavi, (2015), pp. 163–172.
3. R. Salakhutdinov and G. E. Hinton, “Deep Boltzmann Machines,” Proc. Conf. Artif. Intel. Stat. (AISTATS 2009), 448–455 (2009).
4. L. Bottou, F. E. Curtis, and Jorge Nocedal, “Optimization methods for large-scale machine learning,” SIAM Rev., 60, 2, 223–311 (2018).
5. R. Salakhutdinov, “Learning Deep Boltzmann Machines using adaptive MCMC,” Proc. 27th Int. Conf. Mach. Lear., Haifa, Israel, 943–950 (2010).