Abstract
AbstractSorghum [Sorghum bicolor (L.) Moench] is a subsistence crop and the main food for populations in arid or semiarid regions and it is appreciated for the production of gluten-free products, forages, raw materials for industrial transformation and packaging. The end-use of different sorghum purposes having various plant or kernel characteristics require specific breeding programs to develop the desired ideotype. Sorghum grains can be classified according to kernel color, tannins and polyphenols content: white, yellow, red, brown, and black. White sorghum is characterized by a low level of total phenolic content and tannins. The advantage of using white sorghum is: increased protein digestibility, nutritional composition and consumer acceptance similar to other cereals. A collection of 117 white grain sorghums was characterized using 10 SSRs and preliminary agronomic observations were made for main traits. SSR analysis revealed from 10 to 33 alleles per locus.Observed heterozygosity was lower than expected according to the reproduction system of sorghum. Phylogenetic analysis revealed 6 main groups of genotypes. Only one group is constituted by genotypes with the same geographical origin (Egypt) while other groups are admixtures of different countries. The principal coordinate analysis revealed good correspondence between genetic profiles and groups evidenced by similar agronomic performances.
Funder
Regione Lombardia
Università Cattolica del Sacro Cuore
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics
Reference37 articles.
1. Abu Assar A, Uptmoor R, Abdelmula AA, Salih M, Ordon F, Friedt W (2005) Genetic variation in sorghum germplasm from Sudan, ICRISAT, and USA assessed by simple sequence repeats (SSRs). Crop Sci 45. doi:https://doi.org/10.2135/cropsci2003.0383
2. Ali M, Rajewski J, Baenziger P, Gill K, Eskridge K, Dweikat I (2008) Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. Mol Breed 21:497–509. doi:https://doi.org/10.1007/s11032-007-9149-z
3. Bhattramakki D, Dong J, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43(6):988–1002
4. Billot C, Ramu P, Bouchet S, Chantereau J, Deu M, Gardes L, Noyer JL, Rami JF, Rivallan R, Li Y, Lu P, Wang T, Folkertsma RT, Arnaud E, Upadhyaya HD, Glaszmann JC, Hash CT (2013) Massive sorghum collection genotyped with SSR markers to enhance use of global genetic resources. PLoS One 8(4):e59714. doi:https://doi.org/10.1371/journal.pone.0059714
5. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献