Effect of narrow-banded blue LED device on host plant settlement by greenhouse whitefly and currant-lettuce aphid

Author:

Niemann Jan-UweORCID,Poehling Hans-Michael

Abstract

AbstractManipulating phytophagous insects with light-based repelling techniques has shown its potential to be a useful tool in integrated pest management systems in the future. Underlying optical mechanisms can be applied in field and in protected cultivation, with reflecting materials or emitting light sources, such as LEDs. Many pest insects are characterised by their cryptic lifestyle to avoid intervening pest protection measurements. In addition, there is a high degree of resistance mechanisms against insecticides in certain species. The idea of most light-repelling techniques is to reduce the immigration and the settlement of pest species on hostplants before population growth even starts. We conducted experiments with narrow-banded blue LEDs arranged around the plants and emitting radiation towards the sky. For compact rosette Lactuca sativa and upright-branched Euphorbia pulcherrima, we tested the suitability of the measure on settlement of Trialeurodes vaporariorum in 2 choice experiments. In further choice experiments with reduced number of untreated plants, T. vaporariorum and Nasonovia ribisnigri were evaluated for the effect on hostplant settlement of the light barrier on lettuce plants under more practical conditions. The light barrier shows high repellent impact on hostplant settlement by greenhouse whitefly, independent of different plant architectures. The modified choice experiment showed strong decrease in hostplant settlement for greenhouse whitefly. For currant-lettuce aphid, tendencies are shown, but no statistical effect could be demonstrated. Possible applications and differences between the insect species used for the experiments are discussed.

Funder

Fachagentur Nachwachsende Rohstoffe

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3