Fungi associated with fine roots of Fraxinus excelsior affected by ash dieback detected by next-generation sequencing

Author:

Lysenko LudmilaORCID,Griem ErikORCID,Wagener PatrickORCID,Langer Ewald JohannesORCID

Abstract

AbstractThe decline of European ash by dieback caused by Hymenoscyphus fraxineus together with stem collar necroses and rots caused by various fungi has been investigated intensively during the last years. Nevertheless, hitherto nearly nothing is known about the species diversity of the fungal rhizobiome of ash trees. Here we investigated the fine roots of affected ash trees on 15 sampling sites in 6 federal countries of Germany. Fine-root samples have been treated in three different sample regimes each as root-adhering soil, unsterilized fine roots and sterilized fine roots. The samples of trees in sampling sites were pooled to get an overview of the species-richness in the area. The next-generation sequencing platform Oxford Nanopore MinION was used to sequence the entire ITS of pooled probes. Most abundant phyla in all samples were the Basidiomycota and Ascomycota. Species richness in sterilized roots was significantly different from unsterilized roots and root-adhering soil. Surprisingly most abundant genera in sterilized roots were the genera Mycena, Mycenella and Delicatula, all of them agaricoids with saprophytic lifestyle. Eleven genera of Glomeromycota have been detected in various abundances, whereas the detection of H. fraxineus was neglectable.

Funder

Waldklimafonds

Universität Kassel

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3