Molecular identification of Nectriaceae in infections of apple replant disease affected roots collected by Harris Uni-Core punching or laser microdissection

Author:

Popp C.ORCID,Wamhoff D.,Winkelmann T.,Maiss E.,Grunewaldt-Stöcker G.

Abstract

AbstractApple replant disease (ARD) negatively affects growth and yield of apple plants worldwide. Fungi belonging to the Nectriaceae have often been isolated from roots grown in replant soils and thus are proposed among others as one biotic cause of the disease complex. Microscopic analyses of ARD-affected roots revealed characteristic symptoms associated with fungal infection sites. Here, two extraction methods of such tissue sites were applied to directly identify an unknown fungus that forms typical cauliflower-like structures in diseased root cortex cells. Punching small tissue samples of about 0.5 mm3 volume with the Harris Uni-Core is a quick and easy method to harvest symptomatic material. Secondly, a laser microdissection (LMD) protocol for apple roots was established. This technique allows the extraction of defined cell or tissue fractions from thin cryo-sections. Tissue harvesting was followed by the identification of fungi via PCR amplification of two gene fragments and Sanger sequencing. For Harris samples, Chelex was used for DNA stabilization, while LMD samples were directly submitted to PCR. In Harris samples, mainly the Nectriaceae species Dactylonectria torresensis, Ilyonectria robusta and Rugonectria rugulosa were identified. In addition to these, in LMD samples Cylindrocladiella sp. and Ilyonectria europaea were detected. Thus, the intracellular CF structures contained different species of Nectriaceae in the ARD-affected cortex cells. These results contribute considerably to the etiology of the ARD. Both protocols offer the possibility to identify fungi from selected symptomatic small root sections by molecular tools avoiding isolation and subsequent axenic pure cultures of single fungal isolates.

Funder

BMBF

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Reference63 articles.

1. Abbott E, Hall D, Hamberger B, Bohlmann J (2010) Laser microdissection of conifer stem tissues: isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea glauca). BMC Plant Biol 10:106. https://doi.org/10.1186/1471-2229-10-106

2. Agustí J, Merelo P, Cercós M, Tadeo FR, Talón M (2009) Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves. BMC Plant Biol 9:127. https://doi.org/10.1186/1471-2229-9-127

3. Balestrini R, Gómez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20:1055–1062. https://doi.org/10.1094/MPMI-20-9-1055

4. Balestrini R, Nerva L, Sillo F, Girlanda M, Perotto S (2014) Plant and fungal gene expression in mycorrhizal protocorms of the orchid Serapias vomeracea colonized by Tulasnella calospora. Plant Signal Behav 9:e977707. https://doi.org/10.4161/15592324.2014.977707

5. Becker MG, Zhang X, Walker PL, Wan JC, Millar JL, Khan D, Granger MJ, Cavers JD, Chan AC, Fernando DWG, Belmonte MF (2017) Transcriptome analysis of the Brassica napus-Leptosphaeria maculans pathosystem identifies receptor, signaling and structural genes underlying plant resistance. Plant J 90:573–586. https://doi.org/10.1111/tpj.13514

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3