Identification of full-sibling families from natural single-tree ash progenies based on SSR markers and genome-wide SNPs

Author:

Krautwurst Melina,Past Franziska,Kersten Birgit,Bubner Ben,Müller Niels A.

Abstract

AbstractCommon ash, Fraxinus excelsior, is threatened by the invasive pathogen Hymenoscyphus fraxineus, which causes ash dieback. The pathogen is rapidly spreading throughout Europe with severe ecological and economic consequences. Multiple studies have presented evidence for the existence of a small fraction of genotypes with low susceptibility. Such genotypes can be targets for natural and artificial selection to conserve F. excelsior and associated ecosystems. To resolve the genetic architecture of variation in susceptibility it is necessary to analyze segregating populations. Here we employed about 1000 individuals of each of four single-tree progenies from potentially tolerant mother trees to identify full-sibling (full-sib) families. To this end, we first genotyped all 4000 individuals and the four mothers with eight SSR markers. We then used the program COLONY to predict full-sibs without knowledge of the paternal genotypes. For each single-tree progeny, COLONY predicted dozens of full-sib families, ranging from 3–166 individuals. In the next step, 910 individuals assigned to full-sib families with more than 28 individuals were subjected to high-resolution genotyping using over one million genome-wide SNPs which were identified with Illumina low-coverage resequencing. Using these SNP genotyping data in principal component analyses we were able to assign individuals to full-sib families with high confidence. Together the analyses revealed five large families with 73–212 individuals. These can be used to generate genetic linkage maps and to perform quantitative trait locus analyses for ash dieback susceptibility. The elucidation of the genetic basis of natural variation in ash may support breeding and conservation efforts and may contribute to more robust forest ecosystems.

Funder

Bundesanstalt für Landwirtschaft und Ernährung

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz

Waldklimafonds

Fachagentur Nachwachsende Rohstoffe

Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3