Abstract
AbstractDitylenchus dipsaci is an economically important plant-parasitic nematode affecting European sugar beets. To date, no sugar beet cultivars carrying resistance against D. dipsaci are available to farmers. To find potentially resistant sugar beet lines restricting reproduction and penetration of D. dipsaci, three consecutive in vivo bioassays were carried out. The first experiment determined the penetration rate of D. dipsaci in 79 breeding lines and 14 pre-breeding populations. Based on these results, D. dipsaci penetration and reproduction resistance of eight genotypes was intensively investigated. It could be demonstrated that none of the genotypes showed resistance towards D. dipsaci. However, a high variation of the penetration rate by D. dipsaci was observed among the genotypes. The breeding line ‘DIT_119’ effectively reduced D. dipsaci penetration (34.4 ± 8.8 nematodes/plant at 22 days post-planting) compared to the susceptible control (109.0 ± 16.9) while ensuring a yield comparable to non-inoculated plants. However, the breeding line ‘DIT_119’ did not reduce D. dipsaci reproduction. The paternal line of the cultivar BERETTA KWS, demonstrating a high tolerance to D. dipsaci crown rot symptoms, did not reduce penetration and reproduction. Thus, no correlation can be established between reduced penetration rates, reproduction, and tolerance to D. dipsaci. This study provides an essential basis for the development of resistant sugar beet cultivars to D. dipsaci. The variations observed among genotypes now need to be confirmed with larger-scale screenings.
Funder
KWS SAAT SE & Co. KGaA
Schweizer Zucker
Berner Fachhochschule
Berner Fachhochschule BFH
Publisher
Springer Science and Business Media LLC
Subject
Horticulture,Plant Science,Agronomy and Crop Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献