Recent advancements in transparent carbon nanotube films: chemistry and imminent challenges

Author:

Siwal Samarjeet Singh,Saini Adesh Kumar,Rarotra Saptak,Zhang Qibo,Thakur Vijay KumarORCID

Abstract

Abstract Carbon nanotube (CNT)-doped transparent conductive films (TCFs) is an encouraging option toward generally utilized indium tin oxide-depended TCFs for prospective stretchable optoelectronic materials. Industrial specifications of TCFs involve not just with high electrical performance and transparency but also amidst environmental resistance and mechanical characteristic; those are usually excused within the research background. Though the optoelectronic properties of these sheets require to be developed to match the necessities of various strategies. While, the electrical stability of single-walled CNT TCFs is essentially circumscribed through the inherent resistivity of single SWCNTs and their coupling confrontation in systems. The main encouraging implementations, CNT-doped TCFs, is a substitute system during approaching electronics to succeed established TCFs, that utilize indium tin oxide. Here we review, a thorough summary of CNT-based TCFs including an overview, properties, history, synthesis protocol covering patterning of the films, properties and implementation. There is the attention given on the optoelectronic features of films and doping effect including applications for sophisticated purposes. Concluding notes are given to recommend a prospective investigation into this field towards real-world applicability. Graphic abstract This graphical abstract shows the overview of different properties (mechanical, electrical, sensitivity and transportation), synthesis protocols and designing (dry and wet protocol, designing by surface cohesive inkjet-printed and the support of polymers), doping effect (general doping, metal halides, conductive polymers and graphene for transparent electrodes) and implementations (sensing panels, organic light-emitting diodes devices, thin-film transistors and bio-organic interface) of carbon nanotubes transparent conductive films.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3