Learnable differencing center for nighttime depth perception

Author:

Yan ZhiqiangORCID,Zheng YupengORCID,Fan Deng-PingORCID,Li XiangORCID,Li JunORCID,Yang JianORCID

Abstract

AbstractDepth completion is the task of recovering dense depth map from sparse ones, usually with the help of color images. Existing image guided methods perform well on daytime depth perception self-driving benchmarks, but struggle in nighttime scenarios with poor visibility and complex illumination. To address these challenges, we propose a simple yet effective learnable differencing center network (LDCNet). The key idea is to use recurrent inter-convolution differencing (RICD) and illumination affinitive intra-convolution differencing (IAICD) to enhance the nighttime color images and reduce the negative effects of the varying illumination, respectively. RICD explicitly estimates global illumination by differencing two convolutions with different kernels, treating the small-kernel-convolution feature as the center of the large-kernel-convolution feature in a new perspective. IAICD softly alleviates the local relative light intensity by differencing a single convolution, where the center is dynamically aggregated based on neighboring pixels and the estimated illumination map in the RICD. On both nighttime depth completion and depth estimation tasks, extensive experiments demonstrate the effectiveness of our LDCNet, reaching the state of the art.

Funder

Young Scientists Fund of the National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Postgraduate Research and Practice Innovation Program of Jiangsu Province

National Science Fund of China

Publisher

Springer Science and Business Media LLC

Reference60 articles.

1. Hu, J., Bao, C., Ozay, M., Fan, C., Gao, Q., Liu, H., et al. (2022). Deep depth completion from extremely sparse data: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(7), 8244–8264.

2. Dey, A., Jarvis, G., Sandor, C., & Reitmayr, G. (2012). Tablet versus phone: depth perception in handheld augmented reality. In Proceedings of the IEEE international symposium on mixed and augmented reality (pp. 187–196). Piscataway: IEEE.

3. Ma, F., Cavalheiro, G. V., & Karaman, S. (2019). Self-supervised sparse-to-dense: self-supervised depth completion from lidar and monocular camera. In Proceedings of the international conference on robotics and automation (pp. 3288–3295). Piscataway: IEEE.

4. Park, J., Joo, K., Hu, Z., Liu, C.-K., & Kweon, I. S. (2020). Non-local spatial propagation network for depth completion. In A. Vedaldi, H. Bischof, T. Brox, et al. (Eds.), Proceedings of the 16th European conference on computer vision (pp. 120–136). Cham: Springer.

5. Yan, Z., Wang, K., Li, X., Zhang, Z., Li, G., Li, J., et al. (2024). Learning complementary correlations for depth super-resolution with incomplete data in real world. IEEE Transactions on Neural Networks and Learning Systems, 35(4), 5616–5626.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3