A fast mask synthesis method for face recognition

Author:

Guo KaiwenORCID,Zhao Chaoyang,Wang Jinqiao

Abstract

AbstractMask face recognition has recently gained increasing attention in the current context. Face mask occlusion seriously affects the performance of face recognition systems, because more than 75% of the face area remains unexposed and the mask directly causes an increase in intra-class differences and a decrease in inter-class separability in the feature space. To improve the performance of face recognition model against mask occlusion, we propose a fast and efficient method for mask generation in this paper, which can avoid the need for large-scale collection of real-world mask face training sets. This approach can be embedded in the training process of any mask face model as a module and is very flexible. Experiments on the MLFW, MFR2 and RMFD datasets show the effectiveness and flexibility of our approach that outperform the state-of-the-art methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation for Young Scientists of Shanxi Province

Publisher

Springer Science and Business Media LLC

Reference22 articles.

1. Wang, J., Liu, Y., Hu, Y., Shi, H., & Mei, T. (2021). Facex-zoo: a pytorch toolbox for face recognition. In H. T. Shen, Y. T. Zhuang, J. R. Smith, et al. (Eds.), Proceedings of the 29th ACM international conference on multimedia (pp. 3779–3782). New York: ACM.

2. Liu, Y., Shi, H., Shen, H., Si, Y., Wang, X., & Mei, T. (2020). A new dataset and boundary-attention semantic segmentation for face parsing. In Proceedings of the 34th AAAI conference on artificial intelligence (pp. 11637–11644). Palo Alto: AAAI Press.

3. Feng, Y., Wu, F., Shao, X., Wang, Y., & Zhou, X. (2018). Joint 3D face reconstruction and dense alignment with position map regression network. In V. Ferrari, M. Hebert, C. Sminchisescu, et al. (Eds.), Proceedings of the 15th European conference on computer vision (pp. 534–551). Cham: Springer.

4. Guo, X., Li, S., Yu, J., Zhang, J., Ma, J., Ma, L., et al. (2019). PFLD: a practical facial landmark detector. arXiv preprint. arXiv:1902.10859.

5. Guo, Y., Zhang, L., Hu, Y., He, X., & Gao, J. (2016). MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. arXiv preprint. arXiv:1607.08221.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3