1. Kumar, A., Irsoy, O., Su, J., Bradbury, J., English, R., Pierce, B., et al. (2016). Ask me anything: dynamic memory networks for natural language processing. In Proceedings of the 33rd international conference on machine learning (pp. 1378–1387). Stroudsburg: International Machine Learning Society.
2. Luo, L., Xu, J., Lin, J., Zeng, Q., & Sun, X. (2018). An auto-encoder matching model for learning utterance-level semantic dependency in dialogue generation. In Proceedings of the 2018 conference on empirical methods in natural language processing (pp. 702–707). Stroudsburg: ACL.
3. Wang, Y., Liu, C., Huang, M., & Nie, L. (2018). Learning to ask questions in open-domain conversational systems with typed decoders. In Proceedings of the annual meeting of the association for computational linguistics (pp. 2193–2203). New York: ACM.
4. van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., et al. (2016). WaveNet: a generative model for raw audio. In Proceedings of the 9th ISCA speech synthesis workshop (p. 125). Sunnyvale: ISCA.
5. Wang, Y., Skerry-Ryan, R., Stanton, D., Wu, Y., Weiss, R. J., Jaitly, N., et al. (2017). Tacotron: towards end-to-end speech synthesis. In Proceedings of the 18th annual conference of the international speech communication association (pp. 4006–4010). Red Hook: Curran Associates.