PrimitiveNet: decomposing the global constraints for referring segmentation

Author:

Liu Chang,Jiang XudongORCID,Ding HenghuiORCID

Abstract

AbstractIn referring segmentation, modeling the complicated constraints in the multimodal information is one of the most challenging problems. As the information in a given language expression and image becomes increasingly abundant, most of the current one-stage methods that directly output the segmentation mask encounter difficulties in understanding the complicated relationships between the image and the expression. In this work, we propose a PrimitiveNet to decompose the difficult global constraints into a set of simple primitives. Each primitive produces a primitive mask that represents only simple semantic meanings, e.g., all instances from the same category. Then, the output segmentation mask is computed by selectively combining these primitives according to the language expression. Furthermore, we propose a cross-primitive attention (CPA) module and a language-primitive attention (LPA) module to exchange information among all primitives and the language expression, respectively. The proposed CPA and LPA help the network find appropriate weights for primitive masks, so as to recover the target object. Extensive experiments have proven the effectiveness of our design and verified that the proposed network outperforms current state-of-the-art referring segmentation methods on three RefCOCO datasets.

Funder

NTU Presidential Postdoctoral Fellowship

Publisher

Springer Science and Business Media LLC

Reference67 articles.

1. Hu, R., Rohrbach, M., & Darrell, T. (2016). Segmentation from natural language expressions. In B. Leibe, J. Matas, N. Sebe, et al. (Eds.), Proceedings of the 14th European conference of computer vision (pp. 108–124). Cham: Springer.

2. Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431–3440). Piscataway: IEEE.

3. Zhou, Y., Ji, R., Luo, G., Sun, X., Su, J., Ding, X., et al. (2023). A real-time global inference network for one-stage referring expression comprehension. IEEE Transactions on Neural Networks and Learning Systems, 34(1), 134–143.

4. Luo, G., Zhou, Y., Sun, J., Sun, X., & Ji, R. (2024). A survivor in the era of large-scale pretraining: an empirical study of one-stage referring expression comprehension. IEEE Transactions on Multimedia, 26, 3689–3700.

5. He, S., Ding, H., Liu, C., & Jiang, X. (2023). GREC: generalized referring expression comprehension. arXiv preprint. arXiv:2308.16182.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3