1. Hoiem, D., Stein, A. N., Efros, A. A., & Hebert, M. (2007). Recovering occlusion boundaries from an image. In Proceedings of the IEEE international conference on computer vision (pp. 1–8). Piscataway: IEEE.
2. Wang, P., & Yuille, A. (2016). DOC: deep occlusion estimation from a single image. In B. Leibe, J. Matas, N. Sebe, et al. (Eds.), Proceedings of the 14th European conference on computer vision (pp. 545–561). Cham: Springer.
3. Xiaofeng, R., Charless, F., & Jitendra, M. (2006). Figure/ground assignment in natural images. In A. Leonardis, H. Bischof, & A. Pinz (Eds.), Proceedings of the 9th European conference on computer vision (pp. 614–627).
4. Wang, G., Liang, X., & Li, F. (2018). DOOBNet: deep object occlusion boundary detection from an image. In C. V. Jawahar, H. Li, & G. Mori, et al. (Eds.), Proceedings of the 14th Asian conference on computer vision (pp. 686–702). Cham: Springer.
5. Jacobson, N., Freund, Y., & Nguyen, T. Q. (2012). An online learning approach to occlusion boundary detection. IEEE Transactions on Image Processing, 21(1), 252–261.