Dynamic parameter estimation and prediction over consecutive scales, based on moving horizon estimation: applied to an industrial cell culture seed train

Author:

Hernández Rodríguez TanjaORCID,Posch Christoph,Pörtner RalfORCID,Frahm BjörnORCID

Abstract

AbstractBioprocess modeling has become a useful tool for prediction of the process future with the aim to deduce operating decisions (e.g. transfer or feeds). Due to variabilities, which often occur between and within batches, updating (re-estimation) of model parameters is required at certain time intervals (dynamic parameter estimation) to obtain reliable predictions. This can be challenging in the presence of low sampling frequencies (e.g. every 24 h), different consecutive scales and large measurement errors, as in the case of cell culture seed trains. This contribution presents an iterative learning workflow which generates and incorporates knowledge concerning cell growth during the process by using a moving horizon estimation (MHE) approach for updating of model parameters. This estimation technique is compared to a classical weighted least squares estimation (WLSE) approach in the context of model updating over three consecutive cultivation scales (40–2160 L) of an industrial cell culture seed train. Both techniques were investigated regarding robustness concerning the aforementioned challenges and the required amount of experimental data (estimation horizon). It is shown how the proposed MHE can deal with the aforementioned difficulties by the integration of prior knowledge, even if only data at two sampling points are available, outperforming the classical WLSE approach. This workflow allows to adequately integrate current process behavior into the model and can therefore be a suitable component of a digital twin.

Funder

Technische Hochschule Ostwestfalen-Lippe

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Bioengineering,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3