Exploring the limits of conventional small-scale CHO fed-batch for accelerated on demand monoclonal antibody production

Author:

Mahé Amélie,Martiné Alexandra,Fagète Séverine,Girod Pierre-Alain

Abstract

AbstractIn the field of therapeutic antibody production, diversification of fed-batch strategies is flourishing in response to the market demand. All manufacturing approaches tend to follow the generally accepted dogma of increasing titer since it directly increases manufacturing output. While titer is influenced by the biomass (expressed as IVCD), the culture time and the cell-specific productivity (qP), we changed independently each of these parameters to tune our process strategy towards adapted solutions to individual manufacturing needs. To do so, we worked separately on the increase of the IVCD as high seeding fed-batch capacity. Yet, as intensified fed-batch may not always be possible due to limited facility operational mode, we also separately increased the qP with the addition of specific media additives. Both strategies improved titer by 100% in 14 days relative to the standard fed-batch process with moderate and acceptable changes in product quality attributes. Since intensified fed-batch could rival the cell-specific productivity of a conventional fed-batch, we developed novel hybrid strategies to either allow for acceptable seeding densities without compromising productivity, or alternatively, to push the productivity the furthest in order to reduce timelines.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3