Influence of image analysis strategy, cooling rate, and sample volume on apparent protein cloud-point temperature determination

Author:

Klijn Marieke E.ORCID,Hubbuch Jürgen

Abstract

AbstractThe protein cloud-point temperature (TCloud) is a known representative of protein–protein interaction strength and provides valuable information during the development and characterization of protein-based products, such as biopharmaceutics. A high-throughput low volume TCloud detection method was introduced in preceding work, where it was concluded that the extracted value is an apparent TCloud (TCloud,app). As an understanding of the apparent nature is imperative to facilitate inter-study data comparability, the current work was performed to systematically evaluate the influence of 3 image analysis strategies and 2 experimental parameters (sample volume and cooling rate) on TCloud,app detection of lysozyme. Different image analysis strategies showed that TCloud,app is detectable by means of total pixel intensity difference and the total number of white pixels, but the latter is also able to extract the ice nucleation temperature. Experimental parameter variation showed a TCloud,app depression for increasing cooling rates (0.1–0.5 °C/min), and larger sample volumes (5–24 μL). Exploratory thermographic data indicated this resulted from a temperature discrepancy between the measured temperature by the cryogenic device and the actual sample temperature. Literature validation confirmed that the discrepancy does not affect the relative inter-study comparability of the samples, regardless of the image analysis strategy or experimental parameters. Additionally, high measurement precision was demonstrated, as TCloud,app changes were detectable down to a sample volume of only 5 μL and for 0.1 °C/min cooling rate increments. This work explains the apparent nature of the TCloud detection method, showcases its detection precision, and broadens the applicability of the experimental setup.

Funder

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3