Cytotoxicity and radiosensitizing potency of Moscatilin in cancer cells at low radiation doses of X-ray and UV-C

Author:

Pujari IpsitaORCID,Thomas AbithaORCID,Thomas JinsuORCID,Jhawar NiharikaORCID,Guruprasad Kanive ParashivaORCID,Rai Padmalatha S.ORCID,Satyamoorthy KapaettuORCID,Babu Vidhu SankarORCID

Abstract

AbstractMoscatilin (stilbenoid) is a plant-derived anticancer compound, and it has mostly been isolated from threatened wild Dendrobium species. The present study attempts to evaluate the cytotoxicity of Moscatilin on several cancer cell lines through MTT assay. Additionally, it also aims towards estimating and comparing the radiosensitivity, cell-cycle progression, and apoptotic/necrotic effect induced by Moscatilin on different cell lines. The effects of Moscatilin was compared with another significant stilbenoid anticancer agent, Resveratrol (a structural analog of Moscatilin), whose presence has also been reported in Dendrobiums. Considering the threatened nature of this genus, crude extracts of a tropical and epiphytic Dendrobium species, viz., Dendrobium ovatum, prepared from in vitro seedlings were also tested towards cytotoxicity and radiosensitization efficacy. Moscatilin functioned as an effective radiosensitizer at 5 µg/ml along with 1 Gy X-ray and 200 J/m2 UV-C radiations. It was also able to perturb cell cycle both at replicative and post-replicative phases with the aforementioned combination. Moscatilin, in unison with radiation, triggered immunogenic death specifically on cancer cells starting from Pyroptosis, terminating in Necroptosis. Moscatilin, when used singly, could evoke immunogenic cell death. Analyses of Damage-Associated Molecular Patterns released during radiation and Moscatilin treatment would aid in ascertaining the mode of cell death. Moscatilin is a potential radiosensitizer and must be tested for preclinical and clinical trials to combat cancer.

Funder

Science and Engineering Research Board

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Agricultural and Biological Sciences (miscellaneous),Environmental Science (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3