Antioxidant-biocompatible and stable catalase-based gelatin–alginate hydrogel scaffold with thermal wound healing capability: immobilization and delivery approach

Author:

Abdel-Mageed Heidi MohamedORCID,Abd El Aziz Amira Emad,Abdel Raouf Batoul MohamedORCID,Mohamed Saleh AhmedORCID,Nada Dina

Abstract

AbstractHydrogel-based matrix prepared using biopolymers is a new frontier of emerging platforms for enzyme immobilization for biomedical applications. Catalase (CAT) delivery can be effective in inhibiting reactive oxygen species (ROS)-mediated prolongation of the wound healing process. In this study, to improve CAT stability for effective application, gelatin(Gel)–alginate (Alg) biocompatible hydrogel (Gel–Alg), as immobilization support, was prepared using calcium chloride as an ionic cross-linker. High entrapment efficiency of 92% was obtained with 2% Gel and 1.5% Alg. Hydrogel immobilized CAT (CAT–Gel–Alg) showed a wide range of pH from 4 to 9 and temperature stability between 20 to 60 °C, compared to free CAT. CAT–Gel–Alg kinetic parameters revealed an increased Km (24.15 mM) and a decreased Vmax (1.39 µmol H2O2/mg protein min) × 104. CAT–Gel–Alg retained 52% of its original activity after 20 consecutive catalytic runs and displayed improved thermal stability with a higher t1/2 value (half-life of 100.43 vs. 46 min). In addition, 85% of the initial activity was maintained after 8 weeks’ storage at 4 °C. At 24 h after thermal injury, a statistically significant difference in lesion sizes between the treated group and the control group was reported. Finally, our findings suggest that the superior CAT–Gel–Alg stability and reusability are resonant features for efficient biomedical applications, and ROS scavenging by CAT in the post-burn phase offers protection for local treatment of burned tissues with encouraging wound healing kinetics.

Funder

National Research Center

Publisher

Springer Science and Business Media LLC

Subject

Agricultural and Biological Sciences (miscellaneous),Environmental Science (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3