Doxorubicin resistant choriocarcinoma cell line derived spheroidal cells exhibit stem cell markers but reduced invasion

Author:

Balahmar Reham M.,Deepak Venkataraman,Sivasubramaniam ShivaORCID

Abstract

AbstractCell cycle-specific cancer chemotherapy is based on the ability of a drug to halt, minimise or destroy rapidly dividing cells. However, their efficacy is limited by the emergence of a self-renewing cell pool called “cancer stem cells” (CSC). Choriocarcinoma is a tumour of trophoblastic tissue. We, in this study, analysed whether spheroids generated from doxorubicin-treated and non-treated choriocarcinoma cell lines exhibit markers of stem cells. Two choriocarcinoma cell lines, namely JEG-3 and BeWo, were used in this study. Spheroids were generated from doxorubicin-treated cells and the non-treated cells under non-adherent condition, followed by analysis of stem-cell markers’ expression, namely NANOG, OCT4 and SOX2. Immunofluorescence analysis suggested a general increase in the markers’ concentration in spheroids relative to the parental cells. RT-qPCR and immunoblots showed an increase in the stem-cell marker expression in spheroids generated from doxorubicin-treated when compared to non-treated cells. In spheroids, Sox2 was significantly upregulated in doxorubicin-treated spheroids, whereas Nanog and Oct4 were generally downregulated when compared to non-treated spheroids. Both 2D and 3D invasion assays showed that the spheroids treated with doxorubicin exhibited reduced invasion. Our data suggest that choriocarcinoma cell lines may have the potential to produce spheroidal cells, yet the drug-treatment affected the invasion potential of spheroids.

Funder

Ministry of Higher Education of Kingdom of Saudi Arabia

Publisher

Springer Science and Business Media LLC

Subject

Agricultural and Biological Sciences (miscellaneous),Environmental Science (miscellaneous),Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3