Modeling cells spreading, motility, and receptors dynamics: a general framework

Author:

Serpelloni Mattia,Arricca Matteo,Bonanno Claudia,Salvadori Alberto

Abstract

Abstract The response of cells during spreading and motility is dictated by several multi-physics events, which are triggered by extracellular cues and occur at different time-scales. For this sake, it is not completely appropriate to provide a cell with classical notions of the mechanics of materials, as for “rheology” or “mechanical response”. Rather, a cell is an alive system with constituents that show a reproducible response, as for the contractility for single stress fibers or for the mechanical response of a biopolymer actin network, but that reorganize in response to external cues in a non-exactly-predictable and reproducible way. Aware of such complexity, in this note we aim at formulating a multi-physics framework for modeling cells spreading and motility, accounting for the relocation of proteins on advecting lipid membranes. Graphic Abstract We study the mechanical response under compression/extension of an assembly composed of 8 helical rods, pin-jointed and arranged in pairs with opposite chirality. In compression we find that, whereas a single rod buckles (a), the rods of the assembly deform as stable helical shapes (b). We investigate the effect of different boundary conditions and elastic properties on the mechanical response, and find that the deformed geometries exhibit a common central region where rods remain circular helices. Our findings highlight the key role of mutual interactions in the ensemble response and shed some light on the reasons why tubular helical assemblies are so common and persistent.

Funder

Università degli Studi di Brescia

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Computational Mechanics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3