Machine learning models for the secondary Bjerknes force between two insonated bubbles

Author:

Chen Haiyan,Zeng Yue,Li Yi

Abstract

Abstract The secondary Bjerknes force plays a significant role in the evolution of bubble clusters. However, due to the complex dependence of the force on multiple parameters, it is highly non-trivial to include its effects in the simulations of bubble clusters. In this paper, machine learning is used to develop a data-driven model for the secondary Bjerknes force between two insonated bubbles as a function of the equilibrium radii of the bubbles, the distance between the bubbles, the amplitude and the center frequency of the ultrasound wave. The sign of the force may change with the phase difference between the oscillating bubbles. Meanwhile, the magnitude of the force varies over several orders of magnitude, which poses a serious challenge for the usual machine learning models. To overcome this difficulty, the magnitudes and the signs of the force are separated and modelled separately. A nonlinear regression is obtained with a feed-forward network model for the logarithm of the magnitude, whereas the sign is modelled by a support-vector machine model. The principle, the practical aspects related to the training and validation of the machine models are introduced. The predictions from the models are checked against the values computed from the Keller–Miksis equations. The results show that the models are extremely efficient while providing accurate estimate of the force. The models make it computationally feasible for the future simulations of the bubble clusters to include the effects of the secondary Bjerknes force. Graphic abstract

Funder

University of Sheffield

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Computational Mechanics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3