TNT深海爆炸效应的相似律研究

Author:

Yue Junzheng,Wu Xianqian,Huang Chenguang

Abstract

AbstractUnderstanding the dynamic characteristics of deep-sea explosions is essential to improve the survivability and combat capability of deep-sea equipment. In this paper, by considering the practical underwater conditions, we investigated the mechanical effects of the deep-sea 1-kg-trinitrotoluene (TNT) explosion with charge depths ranging from 1 to 10 km through numerical simulation and dimensional analysis. The shock wave overpressure, the positive overpressure pulse, the bubble pulse, and the energy distribution for various depth explosions were analyzed systematically. The simulation results showed that the charge depth was negligible for the peak overpressure of the shock wave. However, the positive overpressure pulse, the shock wave energy, the maximum bubble radius, the bubble energy, and the bubble period decrease significantly with increasing the charge depth. Then, the dimensional analysis for deep-sea TNT explosion was performed to reveal the key dimensionless parameters, from which the scaling laws of the shock wave overpressure and the overpressure pulse were obtained. By fitting the simulation results, the dimensionless equations were proposed, providing an effective method for predicting the peak overpressure and the positive overpressure pulse of shock wave for underwater TNT explosion over a wide range of water depths.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3