Hypofunction of directed brain network within alpha frequency band in depressive patients: a graph-theoretic analysis

Author:

Liu Shuang,Chen Sitong,Huang Zhenni,Liu Xiaoya,Li Meijuan,Su Fangyue,Hao Xinyu,Ming Dong

Abstract

AbstractDirected brain networks may provide new insights into exploring physiological mechanism and neuromarkers for depression. This study aims to investigate the abnormalities of directed brain networks in depressive patients. We constructed the directed brain network based on resting electroencephalogram for 19 depressive patients and 20 healthy controls with eyes closed and eyes open. The weighted directed brain connectivity was measured by partial directed coherence for α, β, γ frequency band. Furthermore, topological parameters (clustering coefficient, characteristic path length, and et al.) were computed based on graph theory. The correlation between network metrics and clinical symptom was also examined. Depressive patients had a significantly weaker value of partial directed coherence at alpha frequency band in eyes-closed state. Clustering coefficient and characteristic path length were significantly lower in depressive patients (both p < .01). More importantly, in depressive patients, disruption of directed connectivity was noted in left-to-left (p < .05), right-to-left (p < .01) hemispheres and frontal-to-central (p < .01), parietal-to-central (p < .05), occipital-to-central (p < .05) regions. Furthermore, connectivity in LL and RL hemispheres was negatively correlated with depression scale scores (both p < .05). Depressive patients showed a more randomized network structure, disturbed directed interaction of left-to-left, right-to-left hemispheric information and between different cerebral regions. Specifically, left-to-left, right-to-left hemispheric connectivity was negatively correlated with the severity of depression. Our analysis may serve as a potential neuromarker of depression.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3