1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/, software available from tensorflow.org
2. Anton H, Rorres C (2014) Elementary linear algebra. Wiley, Applications Version
3. Arnold VI (1992) Ordinary differential equations. Springer, Berlin, Heidelberg
4. Barak O (2017) Recurrent neural networks as versatile tools of neuroscience research. Curr Opin Neurobiol 46:1–6. https://doi.org/10.1016/j.conb.2017.06.003
5. Barranca VJ, Bhuiyan A, Sundgren M, Xing F (2022) Functional implications of dale’s law in balanced neuronal network dynamics and decision making. Front Neurosci. https://doi.org/10.3389/fnins.2022.801847